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Basic Blocks for High-Frequency Interconnects:
Theory and Experiment

HUNG-YU YANG AND NICOLAOS G. ALEXOPOULQS, FELLOW, IEEE

Abstract — Proximity-coupled open-end microstrip interconnects (transi-
tions) in double-layer planar structures are investigated through the method
of moments solution of integral equations. Two types of EMC (electro-
magnetically coupled) microstrip lines are considered, collinear lines and
transverse lines. It is found that these interconnects are broad-band and
provide wide range of coupling coefficient. The theoretical model for the
transverse microstrip transition is in good agreement with measurements.

I. INTRODUCTION

ITH the increasing complexity of microwave and

millimeter-wave integrated circuits, passive compo-
nent modeling becomes more and more important in accu-
rately determining the performance of the designed cir-
cuits. However, up to now, most passive components are
not well understood, especially junction discontinuities.
Quasi-static analysis has been successfully applied to some
discontinuities for low-frequency applications [1]. For
higher frequencies, models based on rigorous dynamic
analysis are required. The so-called spectral-domain ap-
proach [2] is one of these. Since an enclosed housing is
assumed, radiation and surface wave effects are not con-
sidered in that approach. Recently, a more general ap-
proach, based on solving integral equations by the method
of moments, has been applied to certain structures [3]-[6].
This method is applicable to shielded as well as open
structures by using an appropriate Green’s function. For
open structures, this analysis may take into account all
physical effects, including radiation, surface waves, and
dominant as well as higher order mode coupling. Using
this approach, two types of proximity-coupled open-end
microstrip lines in a double-layer planar structure are
investigated in this article. These proximity-coupled transi-
tions constitute potentially important components for MIC
and MMIC design. Fig. 1 shows two semi-infinite collinear
microstrip lines at different levels. This type of transition
has the advantage over the end-coupled lines in that the
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Fig. 1.

overlap distance /,;, may be used to control the coupling.
Also this transition provides a wider range of coupling
coefficients with a reasonably large bandwidth and it
therefore may be used in coupler or filter design. Fig. 2
shows two EMC transverse microstrip lines. In this type of
transition, an open-circuit microstrip line printed on top of
the superstrate is crossed at a right angle by another
open-circuit microstrip line embedded on the substrate.
These two lines are extended a certain distance beyond the
cross-junction to provide tuning stubs. This type of transi-
tion has the properties of broad-band and good match due
to the presence of the double stub. The materials in the
substrate—superstrate configuration may greatly affect the
coupling in the transition, and this issue will also be
investigated. In Section II, the method of moments solu-
tion of integral equations is formulated. Numerical tech-
niques are developed to compute the double infinite
integrations formulated in Section II, and this will be
discussed in Section III. In Section IV, the results from the
numerical analysis are presented and some interesting
properties of the above-mentioned interconnects are dis-
cussed.
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Fig. 2. Proximity-coupled transverse microstrip—microstrip transition.

II. ANALYSIS

In practical circuit design, the width of the microstrip
lines is much smallet than the effective wavelength; there-
fore, the transverse current in the microstrip is neglected
for simplicity. Also, the transverse dependence of the
longitudinal current is assumed such that the edge condi-
tion is enforced [3]-[6]. Under the above assumptions,
integral equations can be formulated in terms of the longi-
tudinal electric field on the microstrip.

A. EMC Collinear Microstrip Lines

Referring to Fig. 1, the integral equations for EMC
collinear microstrip lines are

2
EN =3 |61 ds, 1)
£ [fo,m0a

where E(") is the electric field at microstrip i, i =1 or 2.
Here microstrip 1 is at z= B while microstrip 2 is at
z = H. The Green’s function G, is E, at (x, y) of micro-
strip i due to an f-directed delta source at (x,, y,) of
microstrip j. This Green’s function after solving the
boundary value problem for the layered medium [7] can be
expressed as

G;,= fio f_meij ( AL, )\y) e A X)e =IO g\ d}\y
(2)

where
—JZ,
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D, (M) = g,,(qe, + g, tanh g, B) cosh g, (H — B)

+ (g2, + ;g tanh g, B) sinhg,(H — B) (5)
A=yR-N, (6)
4=k ™
=N -kt (®)
=Nk} ©)
ko= w/ieeo (10)
ky=kgfe; (11)
ky=kofe, (12)
Zy=po/<o - (13)

The functions f;,(A) and g, (M) are defined in the Ap-
pendix.

In the method of moments procedure, the unknown
currents J and J® are expanded in terms of a set of
known functions. An efficient and accurate scheme in
mode expansion of the coupled semi-infinite lines is to use
the basis functions that are composed of subdomain local
modes and entire domain traveling wave modes [5], [6].
For example, the longitudinal dependence of the unknown
current can be expanded as

N
fx) =T +I"+ 3 I,f,(x) (14)
n=1
for the feed line (microstrip 1 here) and
M
g(x)=1I'+ 3. 1,,8,(x) (15)
n=1

for the parasitic line (microstrip 2 here), where

Iinc — e-jkmlx

(16)
(17)
(18)

Here k,, and k,, are the propagation constants of each
microstrip line, which can be determined from a two-
dimensional infinite line analysis [8]. Piecewise-sinusoidal
(PWS) modes are used as subdomain modes and are de-
fined from the end of each line [4]. These modes are

sin k4 (d; — |x + nd,))

sin k 4d;

Ircf - I‘ejkmlx

Ji=Te Temx+la)

fulx) =

for |x + nd,| < d,

(19)
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and

sin k ,(d, — |x + nd; +14])
gn{x) = sin k,d,

for |x + nd, + 14| <d, (20)

where d, and d, are the half-length of the PWS mode in
each line, respectively. The choice of k, and k_, can be
quite arbitrary. Here, they are chosen according to a
treatise in numerical integration. This aspect will be dis-
cussed later. A nice feature of the combination of subdo-
main and entire domain modes is that when the method of
moments is applied, the quantities of interest, I' and 7, are
directly obtained by matrix inversion. Besides, the dimen-
sion of the impedance matrix is relatively small, typically
< 20.

When the above expansion modes are used in (1), fol-
lowed by Galerkin’s procedure in the same way as de-
scribed in [6], integral equations are converted into a set of
linear equations. These M+ N +2 equations, when ex-
pressed in matrix form, are

(4]
- _ [Iinq]
[12] [IinCZ]
T

(21)

The submatrices in (21) are the reaction of different basis
functions. The matrix elements of [Z ] are the reaction
of subdomain modes of the microstrip i, i=1 or 2. The
submatrix [Z, . ] is the column matrix where its elements
arc the reaction between PWS modes and the entire do-
main reflected mode at microstrip i. The elements of
submatrix [Z,,,. ] are the reaction between the PWS
modes in the two different microstrip lines while the
submatrix [Z,, . ] is transpose to [Z,,, ., | due to reciproc-
ity. The submatrix [ Z,, act,] contains the elements which are
the reaction between the entire domain reflected wave at
microstrip i and the PWS mode at the other microstrip.
The excitation submatrices [/, ] and [I;;. ] are much the
same as the column matrices [Z,self] and [ re act, |» T€SPEC-
tively, except in the excitation matrix the entire domain
incident wave instead of the reflected wave is used.

The computation of each matrix element in (21) requires
double infinite integration where the integrand contains
the corresponding Green’s function D, (A,,A,) and the
Fourier transform of the current expansion functions. Since
the expression of these submatrices is in a form similar to
that reported in [5] and [6], only [Zsqe, ] and [Z,, ,3,] are
shown in the following to illustrate how the analysis is
performed. [Z, ] is an (N+1)X N matrix with matrix
elements

[~ pulha )R

-cos [A, (m—

[Zselfl] [ tselfl] [Zeeath] [Zte ath]
[ZeeaCtl] [ teactI] [Zsele] [Ztselfz]

an

self, —

A, )41 (A)

n)d| d\,dx, (22)
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and [Z,,,.
ments

z2= [ [ Da(0aA)B()

-F(X,) 4(A,) 4, (A,)
-cos[A,(ndy+md,—1,)] dX dX,

] is an (N +1)X M matrix with matrix ele-

(23)
where
(cosk,,d,—cosA d,)

Az(Ax)zzket (}\2 __kZ‘)

(24)

F(X,)= J(zxy) (25)

and i =1 or 2. It can be observed from (23) and (24) that
the integrand in the double infinite integration is com-
posed of three factors multiplying one another. These are
the Fourier-transformed Green’s function, current expan-
sion functions in Fourier domain, and the cosine function
of the center distance between each expansion mode. This
property is true for all the submatrices in (21). The method
of numerical integrations of (22) and (23) will be discussed
in Section 1V.

B. EMC Transverse Microstrip Lines

The analysis of EMC transverse microstrip lines is al-
most one to one in correspondence to the collinear case. In
matrix formulation, if local coordinates are used, it can
easily be shown that the self-reaction in each microstrip is
identical for the collinear and transverse cases. To be more
specific, referring to Fig. 2, the integral equations for the
transverse microstrip lines are

E® = f [6.0%d, + [[c,, 524,

E® = ([6,1P4,+ [[6,%d,

where E® and E® are the longitudinal electric fields at
microstrip 1 (at z=B) and microstrip 2 (at z= H), re-
spectively. The function G,, is equal to Gy;, while G, is
the same as G,, except that A, and A, are interchanged in
D,,. Other Green’s functions are

W=l r

(26)
and

(27)

)e-jh(x—xs)ev?\_v(y—ys) dA, d}\y

i (25)
and
G, =G,, (29)
where
—J4
Dy (Mo A)) = =7 EZ[D o o™
>‘x}‘y‘]2
mglz(k)- (30)
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The mode expansion mechanism and the method of mo-
ments procedure follow in the same manner as for the
collinear case. The final matrix is in exactly the same form
as (21). The submatrices [Zy 1,[Z, o ] with i =1 or 2 and
[1is,] are identical for the collinear and transverse cases.
All other submatrices can be obtained in a way similar to
that for the longitudinal coupling case. For example,

Ze== [ [ Py (A)BOY)

'Fl(hy)Al(Ax)AZ()‘y)
-sin[ X, (nd, — 1,)] sin [N, (md, —1,,)] dA, dX,
(31)

where [Z,, ., ] is an (M +1)X N matrix. The parameters
l,, and [, , are the stub lengths for microstrips 1 and 2,
‘respectively. The sine function in (31) instead of a cosine
in (24) is because the Green’s function in (31) is an odd
function of either A, or A .

III. NUMERICAL INTEGRATION

The double infinite integration in each matrix element is
carried out numerically after transforming into polar coor-
.dinates. This procedure reduces the integration to a finite
(0 to 7/2) and an infinite (0 to oo) integral. For the finite
integral, a 32-point Gauss quadrature formula is used. For
the infinite integral, special numerical methods are re-
quired. One can break the infinite integration range into
two parts, (0, 4) and (4, ), such that in the first section
the integrand contains singularities or derivative singulari-
ties, while for the second section the integrand is well
behaved but slowly convergent. The choice of A4 is quite
flexible, but it should satisfy A > max(k,, k,). The first
integral contains surface wave poles whenever D,(A) or
D, (M) becomes zero. If a pole extraction technique is
applied [9], [10], in addition to the residue and Cauchy
principal value, four sections of integrations are required
due to the derivative singularities at A =k, k;, and k,.
The other way of performing the integration from 0 to A4 is
to deform the contour off the real axis and apply the
Cauchy Riemann theorem such that the integrand is well
behaved [11]. This method is particularly useful in a multi-
layered structure, since it is not required to know the pole
position, and the integration has no singularities. Both of
the above-mentioned methods have been used and a
negligible difference has been observed.

The second integration from A to co is the so-called tail
integration. This integration converges slowly when the
testing and observation points are on the same plane (same
z). Also, as A gets larger, the integrand becomes a highly
oscillating function. Although Filon’s integration method
can be applied, difficulty still exists, especially for small
_size basis function [8]. A more efficient and accurate
.method is to use an asymptotic extraction technique [12],
[13]. This technique requires additional computations of
-the self and mutual reactions of PWS and entire domain
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modes in a homogeneous medium with dielectric constant
€5 It can be shown from the asymptotic behavior of the
Green’s function for a multilayered planar structure that
this €., is equal to the square root of the average of the
dielectric constants right above and below the source point.

Therefore, in this work we choose k,=kg/(e;+¢,)/2

and k,, = kq/(e,+1)/2. With this technique, the conver-
gence of the tail integration is improved by the order of A%
Also, by using entire domain basis functions, convergence
can be improved. This is because the integrand will con-
tain the Fourier transform of the entire domain mode,
which decreases quickly away from the point where A | is
equal to the phase constant (k,, or k,,,). ‘

IV. REsuULTS

Although the impedance matrix in (21) looks formida-
ble, the computation can be further simplified based on
some physical phenomena, For example, the Green’s func-
tion and basis functions are the same in each submatrix
except for a translation in reaction center. Therefore in the
numerical process, these common factors need to be com-

-puted only once. Also, due to reciprocity, only part of the

impedance elements need to be computed. The results have
been compared for the special cases of an EMC collinear

rand an EMC transverse dipole fed by a microstrip line

with results in [3] and [14], [15], respectively. Excellent

‘agreement has been found for both theoretical and expéri-

mental results. In the present computations for the transi-
tion problem, entire domain modes three and a half guided
wavelengths long and eight to 13 PWS modes (depending

.on the overlap or stub length) are used in each microstrip
‘line. The convergence has been checked for S;,(I'), to

within 3 percent in magnitude and 3° in phase. The

'magnitude of the reflection and transmission coefficients

are shown in Figs. 3 and 4, respectively, as a function of

coverlap for the collinear transition with three types of

material arrangements. The corresponding microstrip width
is chosen such that the microstrip lines have 50 € char-

r acteristic impedance. For the case of large dielectric con-

stant material in the substrate and a smaller one in the

' superstrate, since energy is mostly confined in the sub-

strate, less power is transmitted than in other types of
material arrangements. This behavior is observed in Figs. 3
and 4. From these two figures, one can see that the
coupling coefficient depends on the amount of energy of
an embedded microstrip stored in the superstrate. The
relationship between overlap length and power distribution
observed in Figs. 3 and 4 is not obvious. It can be
explained empirically as follows. The amount of current
induced in the parasitic line is mainly due to the longitudi-
nal electric field generated by the open-end feed line. This
current varies sinusoidally and decreases as the observa-
tion point moves farther away from the open end. There-
fore, as the two microstrips are brought closer, increased
coupling occurs. As the coupling gets stronger, the electric

. field due to the parasitic line will interact with the feed line



1262
H \ -
-\ _-\<\:
kS AN
o .
L ‘\
Wi,
=
a2
=
o
Sa
mo=d
@
&
ES
w8
©o g
-
w
o
: \
= g =22and g, =102
Do
S
£
—————— €, =102 and g, =22
o
< —--—g =102ande; = 102
8
%' 0 0c ¢ og cs 2 ot RS 0 21 0 24
OVERLAF Luino™ -
Lty
Fig. 3. |T| versus overlap /; for an EMC 50 -50 & collinear micro-

strip transition. f =10 GHz, H = 50 mil, B =25 mil.

0 63 0:'7

=
MAGNITUDE OF TRANSMISSION COEF
0 25 0,38 6,50

'.13

00

oc T o8 c o2 [T o 16 T o' 2u
GVERLMe LEMITH

lofho

|T| versus overlap /; for an EMC collinear microstrip transi-
tion. Parameters are the same as those in Fig. 3.

D oo oo 0

Fig. 4.

field. Since these two microstrip lines guide different
modes, as the overlap increases further, the coupling starts
to decrease due to wave destructive interference. It is
interesting to see that with a particular overlap length, very
little coupling occurs. This behavior is found to be related
to the superstrate thickness and dielectric constant. It is
also observed that as the overlap gets larger, the reflection
becomes smaller. This implies that in such a case, the
guided fundamental mode is more like the coupled line
mode. It is further found from Figs. 3 and 4 that in a
certain region where coupling reaches a local maximum,
the scattering matrix is insensitive to overlap length. Since
the line impedance and effective dielectric constant are

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 8, AUGUST 1988

IDor N
5

- e

[ 8,40 s 80 ) 2;

b4 1b.80 11 20  11.60 12,00

.00

HEQUETNS(?Y e
Fig. 5. |I'| and |T'| versus frequency. /;; =0.15 cm, ¢, =22, and ¢, =

10.2. A =50 mil, B = 25 mil, w, = 42 mil, and w, = 76 mil.

0.80

Lofhg = 0.15

0.70

0,80

W
8
=
g
m g
§a Lalhg = 0.01
ok
LU AN 7
N |
S8
25
2
£
jd \
\ 1 ofhg =025
€ =2.2and g, =10.2 \ |
\ ‘
\ i
\ 1]
° \ /
= N /
o \ /
.
Yoo oo: 006 009 012 0 is J 18 0.2t a20 o217 030
STUB LENGTH OF THE FEED LINE 1
mlMO
Fig. 6. |I'| as a function of stub length for a 50 £-50 @ transverse

transition. =10 GHz, H=>50 mil, B=25 mil, w =42 mil, and
w, = 76 mil,

also frequency insensitive, in this microstrip transition,
only the effective overlap length will be frequency sensi-
tive. This implies that this transition is broad-band. An
example is shown in Fig. 5. One can see that the scattering
parameters change no more than 3 percent in magnitude
for this particular X-band computation.

For the transverse microstrip transition, the material
also has a strong effect on the coupling mechanism, as
shown in Figs. 6 and 7. The coupling between two trans-
verse microstrips is further complicated by the presence of
two tuning stubs. The effect of these two stubs is very
much different from those in the microstrip—slotline tran-
sition [1] and [6], where optimum coupling occurs when
both stubs are about a quarter wavelength long. For the
transverse microstrip transition, the coupling is minimum
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when either stub is about a quarter wavelength and is
maximum when both stubs are half a wavelength long.
This phenomenon is due to the fact that the parasitic line,
from a circuit point of view, is a shunt element to the feed
line, and vice versa. Therefore, when both stubs are half a
wavelength long, the circuit, looking from the cross junc-
tion, is in resonance, while when either stub is about a
quarter wavelength long, the circuit is in effect shorted.
For the parameters in Fig. 6, the guided wavelength for
each microstrip is approximated as A,; =0.547\, and
A2 =0.507A,, while in Fig. 7 the guided wavelength is
A,.=0.321A, for microstrip 1 and A, ,=0.360A, for
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microstrip 2. In Fig. 6, maximum coupling occurs when
both stubs /,; and /,, are about half a guided wavelength.
In this particular case, one can see that the VSWR of this
transition can be as small as 1.1. Therefore, this transition
can be potentially useful in two-level circuit design.

To verify the performed analysis, a 3 inch by 2 inch
circuit has been built and tested for the case of transverse
microstrip transition. Duroid materials with permittivity
2.2 and 10.2 are used as the substrate and the superstrate,
respectively. The dimensions of the device are chosen to be
the same as those in Fig. 6 except that stub lengths of
about half a guided wavelength are used (0.75 cm and 0.81
cm for the top and bottom microstrip, respectively). The
circuit is made by a standard photoetching technique and
measured by the HP-8510 network analyzer. Both com-
puted and measured results for VSWR are shown in Fig. 8.
The comparison shows good agreement. The ripple ob-
served in the measurement may be due to the imperfect
match at the coaxial-microstrip transitions. One can ob-
serve that the VSWR is less than 1.8 from 7 to 11 GHz.
Such a broad-band transition would be very useful in
circuit design. This broad-band property is mainly attri-
buted to the double resonance due to the presence of
double stubs. In this investigation, 50 © microstrip lines
are used. The impedance level will affect coupling in the
transition. Therefore, the results presented here may not be
optimized. The choice of the impedance level may depend
upon the purpose of the circuit design.

V. CoNCLUSION

Two types of proximity-coupled open-end microstrip
transitions are investigated theoretically; these are the EMC
collinear and transverse transitions. The results obtained
from the method of moments solution of integral equa-
tions are compared with measurement, with good agree-
ment. It is found that the collinear transition can be
potentially used in microwave coupler or filter design due
to its properties of large bandwidth and wide range of
coupling coefficient. The transverse transition is particu-
larly useful for two-level circuit design where the VSWR
can be nearly 1 over a wide range of frequency.

APPENDIX

Certain functions defined in Section II are explicitly
described in this Appendix. Functions £, (M) and g, ;(A) in
(3) are expressed as

fu(X) =gsinhg,(H - B) + g,coshq,( H — B)
gu(A) = (51_fz)fn(}‘)[quCOSh‘Iz(H" B)

+ g, sinhg,(H — B)| + ¢,(1—¢,) 4,9, tanh ¢, B
(A2)

(A1)

g, sinhg,(H — B)
tanh ¢, B

fo(A) = +g,coshq,(H—B)  (A3)
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gn(A)=(1- €2)[‘115200511‘12(11’_ B)tanhgq, B
+ g€, sinhg,( H— B)]

T(A)+ e (e —€)qq, (A4)
f(A) =g, (A5)
812(A) =€,(1—¢;) /n(N) g, tanh g, B .

+ (&, €3) 2 [ge, cosh g, (H — B)

+ g, sinhg,( H— B)] (A6)
fa (M) =f12(>‘) (A7)
and
g1(A) = g1, (A). (A8)
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