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Basic Blocks for High-Frequency Interconnects:
Theory and Experiment

HUNG-YU YANG AND NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE

Abstract — Proximity-coupled opeu-end microstrip interconnects (transi-

tions) in double-layer planar structures are investigated through the method

of moments solution of integral eqnations. Two types of EMC (electro-

magnetically coupled) microstrip lines are considered, collinear lines and

transverse fines. It is found that these interconnects are broad-band and

provide wide range of conpling coefficient. The theoretical model for the

transverse microstrip transition is in good agreement with measurements.

I. INTRODUCTION

w ITH the increasing complexity of microwave and

millimeter-wave integrated circuits, passive compo-

nent modeling becomes more and more important in accu-

rately determining the performance of the designed cir-

cuits. However, up to now, most passive components are

not well understood, especially junction discontinuities.

Quasi-static analysis has been successfully applied to some

discontinuities for low-frequency applications [1]. For

higher frequencies, models based on rigorous dynamic

analysis are required. The so-called spectral-domain ap-

proach [2] is one of these. Since an enclosed housing is

assumed, radiation and surface wave effects are not con-

sidered in that approach. Recently, a more general ap-

proach, based on solving integral equations by the method

of moments, has been applied to certain structures [3]–[6].

This method is applicable to shielded as well as open

structures by using an appropriate Green’s function. For

open structures, this analysis may take into account all

physical effects, including radiation, surface waves, and

dominant as well as higher order mode coupling. Using

this approach, two types of proximity-coupled open-end

rnicrostrip lines in a double-layer planar structure are

investigated in this article. These proximity-coupled transi-

tions constitute potentially important components for MIC
and MMIC design. Fig. 1 shows two semi-infinite collinear

microstrip lines at different levels. This type of transition

has the advantage over the end:coupled lines in that the
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Fig. 1. Proximity-coupled collinear microstrip–microstrip transition.

overlap distance 101may be used to control the coupling.

Also this transition provides a wider range of coupling

coefficients with a reasonably large bandwidth and it

therefore may be used in coupler or filter design. Fig. 2

shows two EMC transverse microstrip lines. In this type of

transition, an open-circuit microstrip line printed on top of

the superstrata is crossed at a right angle by another

open-circuit rnicrostrip line embedded on the substrate.

These two lines are extended a certain distance beyond the

cross-junction to provide tuning stubs. This type of transi-

tion has the properties of broad-band and good match due

to the presence of the double stub. The materials in the
substrate–superstrate configuration may greatly affect the

coupling in the transition, and this issue will also be

investigated. In Section II, the method of moments solu-

tion of integral equations is formulated. Numerical tech-

niques are developed to compute the double infinite

integrations formulated in Section II, and this will be

discussed in Section III. In Section IV, the results from the

numerical analysis are presented and some interesting

properties of the above-mentioned interconnects are dis-

cussed.
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Fig. 2. Proximity-coupled transverse microstnp–microstrip transition.

II. ANALYSIS

In practical circuit design, the width of the microstrip

lines is much smallei- than the effective wavelength; there-

fore, the transverse current in the microstrip is neglected

for simplicity. Also, the transverse dependence of the

longitudinal current is assumed such that the edge condi-

tion is enforced [3]–[6]. Under the above assumptions,

integral equations can be formulated in terms of the longi-

tudinal electric field on the microstrip.

A. EA4C Collinear Microstrip Lines

Referring to Fig. 1, the integral equations for EMC

collinear microstrip lines are

(1)

where E~2J is the electric field at microstrip i, i = 1 or 2.

Here microstrip 1 is at z = B while microstrip 2 is at

z = H. The Green’s function G,j is EX at (x, y) of rnicro-

strip i due to an l-directed delta source at (x., y.) of

microstrip j. This Green’s function after solving the

boundary value problem for the layered medium [7] can be

expressed as

Gij = /m jm Dij(~x, ~y) ~-JxxIx-x,)e-Jk,(Y-Ys)d~xd~y
—m—w

(2)

where

[

– jZo k; - A2
---#,(A)D,,(~.Y ‘y) = 4T2kOcz .

A;qz
gi (A)

+ D@(A) Din(A) ‘ 1 (3)

(De(A)=q2 q+

I

ql

tanhqlB )
coshq2(H– B)

\

qlq

+q2 (lZ+

)

— sinhqz(H– B) (4)
qz tanh qlB

Dm(A)=q2c2(qe1 +q1tanhq1B)coshq2 (H-B)

+ (q~cl + c~qlq tanhqlll) sinhqz(ll– B) (5)

The functions ~J(A) and gl,(~) are defined in the Ap-

pendix.

In the method of moments procedure, the unknown

currents J~l) and Jj2j are expanded in terms of a set of

known functions. An efficient and accurate scheme in

mode expansion of the coupled semi-infinite lines is to use

the basis functions that are colmposed of subdomain local

modes and entire domain traveling wave modes [5], [6].

For example, the longitudinal dependence of the unknown

current can be expanded as

N
f(x) =11”’+1’”+ ~ InJn(x) (14)

~=]

for the feed line (microstrip 1 here) and

g(x) =1’+ f I.zgn(x)
~==1

(15)

for the parasitic line (microstrip 2 here), where

linc = e-jk.lx (16)

lref = – Te jk~ (17)

It= Te-J%n2(x+ 1.,). (18)

Here kml and kmz are the propagation constants of each

microstrip line, which can be determined from a two-

dimensional infinite line analysis [8]. Piecewise-sinusoidal
(PWS) modes are used as suhdornain modes and are de-

fined from the end of each line [4]. These modes are

sin kel(dl – lx + mill)
fn(x) = for lx+ ndll < dl

sin keldl

(19)
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and

sin k,z(ffz – lx+ ndl + 1011)

g.(x) =
sin k.2d2

for lx+ ndz + 1011< d2 (20)

where dl and dz are the half-length of the PWS mode in

each line, respectively. The choice of kel and kez can be

quite arbitrary. Here, they are chosen according to a

treatise in numerical integration. This aspect will be dis-

cussed later. A nice feature of the combination of subdo-

main and entire domain modes is that when the method of

moments is applied, the quantities of interest, 17and T, are

directly obtained by matrix inversion. Besides, the dimen-

sion of the impedance matrix is relatively small, typically

<20.

When the above expansion modes are used in (l), fol-

lowed by Galerkin’s procedure in the same way as de-

scribed in [6], integral equations are converted into a set of

linear equations. These M + N + 2 equations, when ex-

pressed in matrix form, are

(21)

The submatrices in (21) are the reaction of different basis

functions. The matrix elements of [ Z,,lf ] are the reaction

of subdomain modes of the microstrip’ i, i = 1 or 2. The

submatrix [ Zt ,elf ] is the column matrix where its elements

are the reaction’ between PWS modes and the entire do-

main reflected mode at microstrip i. The elements of

submatrix [Z,, ,Ctl] are the reaction between the PWS

modes in the two different microstrip lines while the

submatrix [Z., .Ctq] }s transpose to [ Zee ,Ctl] due to reciproc-

ity. The submatri; [ Z[, ,Ctr] contains the elements which are

the reaction between the entire domain reflected wave at

rnicrostrip i and the PWS mode at the other microstrip.

The excitation submatrices [l,.C,] and [linC,] are much the

same as the column matrices [2, ,,lfl] and [Z,. ,Ct,], respec-

tively, except in the excitation matrix the entire domain

incident wave instead of the reflected wave is used.

The computation of each matrix element in (21) requires

double infinite integration where the integrand contains

the corresponding Green’s function D,, (AX, X~) and the
Fourier transform of the current expansion functions. Since

the expression of these submatrices is in a form similar to

that reported in [5] and [6], only [ Z,elfl] and [Z,, ~Ctl,] are

shown in the following to illustrate how the analysis is

performed. [2,.1,] is an (N+ 1) X N matrix with matrix

elements

and [Z,,,C,, ] is an (N+ 1) x M matrix with matrix ele-

ments -

?xct2=Jmp MVY)WY)
—w .W

“F1(AY)4(AX)A2(AX)

.COS [AX(ndl+ mdz – /01)] dXXdAy (23)

where

(cosk,,d, -cosAXd,)
A,(AX) = 2ke,

(X~-k;z)
(24)

(25)

and z’= 1 or 2. It can be observed from (23) and (24) that

the integrand in the double infinite integration is com-

posed of three factors multiplying one another. These are

the Fourier-transformed Green’s function, current expan-

sion functions in Fourier domain, and the cosine function

of the center distance between each expansion mode. This

property is true for all the submatrices in (21). The method

of numerical integrations of (22) and (23) will be discussed

in Section IV.

B. EMC Transverse Microstrip Lines

The analysis of EMC transverse microstrip lines is al-

most one to one in correspondence to the collinear case. In

matrix formulation, if local coordinates are used, it can

easily be shown that the self-reaction in each microstrip is

identical for the collinear and transverse cases. To be more

specific, referring to Fig. 2, the integral equations for the

transverse microstrip lines are

@l) =
J.1

GxxJ:l)d,, +

u

fjyJ:)d
S2

and

~:) =
!/

GyxJ})d~l +

J/
GyyJ:2)d

J-2

where E,!l) and E12) are the longitudinal electric

(26)

(27)

fields at

microstr~p 1 (at z’= B) and mi~rostrip 2 (at z = H), re-

spectively. The function GXX is equal to Gil, while GYY is

the same as G22 except that AX and AY are interchanged in

D22. Other Green’s functions are

Gx. = /w~mDXY(AX, Ay)e-jA.tx-x.)e-JA.,(Y-Y,)d~xd~y
—m –Cm

(28)

and

G,X = GXY (29)

where

– jZo

[

– AXAY
‘Xy(A.7 ‘Y) = QT2kOC2jj7@12(A)

e

AxAyq2 1+D,(A) D~(A)g12(x) “ ’30)
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The mode expansion mechanism and the method of mo-

ments procedure follow in the same manner as for the

collinear case. The final matrix is in exactly the same form

as (21). The submatrices [ Z,,lf ], [ Zt ~lf ] with i = 1 or 2 and

[ linCl] are identical for the collinear and transverse cases.

All other submatrices can be obtained in a way similar to

that for the longitudinal coupling case. For example,

-%&t,= -Jm/m%(wy)mx)
—m —w

v’JAy)A&M2(~y)

.sin[~x(n~l– Zml)] sin[AY(nui– l~z)] d~xd~Y
(

(31)

where [Z, .,.,,1 is an (M+ 1) X N matrix. The parameters
Jnl and IMZ are the stub lengths for microstrips 1 and 2,

respectively. The sine function in (31) instead of a cosine

in (24) is because the Green’s function in (31) is an odd

function of either AX or AY.

III. NUMERICAL INTEGRATION

The double infinite integration in each matrix element is

carried out numerically after transforming into polar coor-

dinates. This procedure reduces the integration to a finite

(O to 7r/2) and an infinite (O to m) integ@. For the finite

integral, a 32-point Gauss quadrature formula is used. For

1the infinite integral, special numerical methods are re-

quired. One can break the infinite integration range into

two parts, (O, A) and (A, cc), such that in the first section

the integrand contains singularities or derivative singulari-

ties, while for the second section the integrand is well

behaved but slowly convergent. The choice of A is quite

flexible, but it should satisfy A > max(kl, k2). The first

integral contains surface wave poles whenever D.(A) or

D~( X ) becomes zero. If a pole extraction technique is

applied [9], [10], in addition to the residue and Cauchy

principal value, four sections of integrations are required

due to the derivative. singularities at A = kO, kl, and kz.

The other way of performing the integration from O to A is

to deform the contour off the real axis and apply the

Cauchy Riemann theorem such that the integrand is well

behaved [11]. This method is particularly useful in a multi-

layered structure, since it is not required to know the pole

position, and the integration has no singularities. Both of

the above-mentioned methods have been used and a
negligible difference has been observed.

The second integration from A to co is the so-called tail

integration. This integration converges slowly when the

testing and observation points are on the same plane (same

z). Also, as A gets larger, the integrand becomes a highly

oscillating function. Although Filon’s integration method

can be applied, difficulty still exists, especially for small

size basis function [8]. A more efficient and accurate

~method is to use an asymptotic extraction technique [12],

[13]. This technique requires additional computations of

the self and mutual reactions of PWS and entire domain

modes in a homogeneous medium with dielectric constant

C,ff. It can be shown from the asymptotic behavior of tht

Green’s function for a multilayered planar structure that

this ●,ff is equal to the square root of the average of the

dielectric constants right above and below the source ~oint.

Therefore, in this w&k we choose kel = kO/-

and k,z = /co/(6 ~ + 1)/2. With this technique, the conver-

gence of the tail integration is improved by the order of AZ.

Also, by using entire domain basis functions, convergence

can be improved. This is because the integrand will con-

tain the Fourier transform of the entire domain mode,

which decreases quickly away from the point where XX is

equal to the phase constant, (k,.l or k~z).

IV. RESULTS

Although the impedance mamix in (21) looks formida-

ble, the computation can be further simplified based on

some physical phenomena. For example, the Green’s func-

tion and basis functions are the same in each submatrix

except for a translation in reaction center. Therefore in the

numerical process, these common factors need to be com-

puted only once. Also, due to reciprocity, only part of the

impedance elements need to be computed. The results have

been compared for the special cases of an EMC collinear

and an EMC transverse dipo’le fed by a microstrip line

with results in [3] and [14], [15], respectively. Excellent

agreement has been found for both theoretical and experi-

mental results. In the present computations for the transi-

tion problem, entire domain modes three and a half guided

wavelengths long and eight to 13 PWS modes (depending

~on the overlap or stub length) are used in each microstrip

line. The convergence has been checked for Sll(r), to

within 3 percent in magnitude and 3° in phase. The

‘ magnitude of the reflection and transmission coefficients

are shown in Figs. 3 and 4, respectively, as a function of

, overlap for the collinear transition with three types of

material arrangements. The corresponding microstrip widt h

is chosen such that the micro strip lines have 50 0 char-

! acteristic impedance. For the case of large dielectric con-

stant material in the substrate and a smaller one in the

superstrata, since energy is mostly confined in the sub-

strate, less power is transmitted than in other types of

material arrangements. This behavior is observed in Figs. 3

and 4. From these two figures, one can see that the

coupling coefficient depends on the amount of energy c)f

an embedded microstrip stored in the superstrata. The

relationship between overlap length and power distribution

observed in Figs. 3 and 4 is not obvious. It can be

explained empirically as follows. The amount of current

induced in the parasitic line is mainly due to the longitudi-

nal electric field generated by the open-end feed line. This

current varies sinusoidally and decreases as the observa-

tion point moves farther away from the open end. There-

fore, as the two microstrips are brought closer, increased

coupling occurs. As the coupling gets stronger, the electric

field due to the parasitic line will interact with the feed line
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field. Since these two microstnp lines guide different

modes, as the overlap increases further, the coupling starts

to decrease due to wave destructive interference. It is

interesting to see that with a particular overlap length, very

little coupling occurs. This behavior is found to be related

to the superstrata thickness and dielectric constant. It is

also observed that as the overlap gets larger, the reflection

becomes smaller. This implies that in such a case, the

guided fundamental mode is more like the coupled line

mode. It is further found from Figs. 3 and 4 that in a

certain region where coupling reaches a local maximum,

the scattering matrix is insensitive to overlap length. Since

the line impedance and effective dielectric constant are

=

%1
m

. —. .-— --—. ——_______ —___ ————— ——----

:

s
.

I

‘1
2
% 00 i.,, ,’ m ,$,0 ,<,0 b,,. !h w ,b,m d ?0 )’1.60 1$.00
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Fig. 5. 1171and lZ’1 versus frequency. 101= 0.15 cm, q = 2.2, and 62 =
10.2. H= 50 roil, B =25 roil, WI= 42 roil, and W2 =76 roil.
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Fig. 6. (rl as a function of stub length for a 50 Q–50 Q transverse
transition. ~ =10 GHz, H= 50 roil, B = 25 nil, WI= 42 roil, and
W2 = 76 roil.

also frequency insensitive, in this microstrip transition,

only the effective overlap length will be frequency sensi-

tive. This implies that this transition is broad-band. An

example is shown in Fig. 5. One can see that the scattering

parameters change no more than 3 percent in magnitude

for this particular X-band computation.

For the transverse rnicrostrip transition, the material

also has a strong effect on the coupling mechanism, as

shown in Figs. 6 and 7. The coupling between two trans-

verse microstrips is further complicated by the presence of

two tuning stubs. The effect of these two stubs is very

much different from those in the rnicrosttip-slotline tran-

sition [1] and [6], where optimum coupling occurs when

both stubs are about a quarter wavelength long. For the

transverse microstrip transition, the coupling is minimum
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Fig. 8. VSWR versus frequency for a transverse rnicrostnp transition.
Parameters are the same as those in Fig. 6, except 1~1= 0.81 cm and
I.z = 0.75 cm. — theory –––– measurement.

when either stub is about a quarter wavelength and is

maximum when both stubs are half a wavelength long.

This phenomenon is due to the fact that the parasitic line,

from a circuit point of view, is a shunt element to the feed

line, and vice versa. Therefore, when both stubs are half a

wavelength long, the circuit, looking from the cross junc-

tion, is in resonance, while when either stub is about a

quarter wavelength long, the circuit is in effect shorted.

For the parameters in Fig. 6, the guided wavelength for

each rnicrostrip is approximated as Aml = 0.547A0 and

A~2 = 0.507A0, while in Fig. 7 the guided wavelength is

Anl = 0.321A0 for microstrip 1 and ~~z = 0.360A0 for

microstrip 2. In Fig. 6, maximum coupling occurs when

both stubs 1~1 and lmz are about half a guided wavelength.

In this particular case, one can see that the VSWR of this

transition can be as small as 1.1.. Therefore, this transition

can be potentially useful in two-level circuit design.

To verify the performed analysis, a 3 inch by 2 inch

circuit has been built and tested for the case of transverse

microstrip transition. Duroid materials with permittivity

2.2 and 10.2 are used as the substrate and the superstrata,

respectively. The dimensions of the device are chosen to be

the same as those in Fig. 6 e~cept that stub lengths of

about half a guided wavelength are used (0.75 cm and 0.81

cm for the top and bottom microstrip, respectively). The

circuit is made by a standard photoetching technique and

measured by the HP-851O network analyzer. Both com-

puted and measured results for VSWR are shown in Fig. 8.

The comparison shows good agreement. The ripple ob-

served in the measurement may be due to the imperfect,

match at the coaxial-microstrip transitions. One can ob-

serve that the VSWR is less than 1.8 from 7 to 11 GHz.

Such a broad-band transition would be very useful in

circuit design. This broad-band property is mainly attri-

buted to the double resonance due to the presence of

double stubs. In this investigation, 50 !2 rnicrostrip lines

are used. The impedance level will affect coupling in the

transition. Therefore, the results presented here may not be

optimized. The choice of the impedance level may depend

upon the purpose of the circuit design.

V. CONCI.USION

TWO types of profity-coupled open-end microstrip

transitions are investigated theoretically; these are the EMC

collinear and transverse transitions. The results obtainedl

from the method of moments solution of integral equa-.

tions are compared with measurement, with good agree-

ment. It is found that the collinear transition can be

potentially used in microwave coupler or filter design due

to its properties of large bandwidth and wide range of

coupling coefficient. The transverse transition is particu

larly useful for two-level circuit design where the VSWR

can be nearly 1 over a wide range of frequency.

APPENDIX

Certain functions defined in Section II are explicitly

described in this Appendix. Functions ~j(~) and g, ~(~) in

(3) are expressed as

\II(~) = qSinhq2(~- ~)+ qtcoshq,(H - B) (Al)

gn(~) = (~~–~2)fl~(A) [qczcoshq2(H– B)

+ q2sinhqz(H– B)] + ~2(1–c2)qlqz tanhqlB

(A2)

f22(~) =
qlsinhqz(H– B)

+ q2coshq2(H– 1?)
tanh qlB

(A3)
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gzz(~) = (1–~2)[w2co Q2(~-B

+q2clsinhq,(H -B)]

“f,,(A) +c2(q-~2)w,

f12(~)=~2

tanh qlB

glz(~) ‘~2(1–~2).f22(x) q1tanhq1B

+(cl–c2)g2 [qc2coshq2(H

+q2sinhq2(H– B)]

f21(~) =.f12(~)

and

b’21(~) =&2(~).
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